Labeling Thiols on Proteins, Living Cells, and Tissues with Enhanced Emission Induced by FRET

نویسندگان

  • Yue Yuan
  • Xijun Wang
  • Bin Mei
  • Dongxin Zhang
  • Anming Tang
  • Linna An
  • Xiaoxiao He
  • Jun Jiang
  • Gaolin Liang
چکیده

Using N-(2-Aminoethyl)maleimide-cysteine(StBu) (Mal-Cys) as a medium, protein thiols were converted into N-terminal cysteines. After a biocompatible condensation reaction between the N-terminal cysteine and fluorescent probe 2-cyanobenzothiazole-Gly-Gly-Gly-fluorescein isothiocyanate (CBT-GGG-FITC), a new fluorogenic structure Luciferin-GGG-FITC was obtained. The latter exhibits near one order of magnitude (7 folds) enhanced fluorescence emission compared to the precursor moiety due to fluorescence resonance energy transfer (FRET) effect between the newly formed luciferin structure and the FITC motif. Theoretical investigations revealed the underlying mechanism that satisfactorily explained the experimental results. With this method, enhanced fluorescence imaging of thiols on proteins, outer membranes of living cells, translocation of membrane proteins, and endothelial cell layers of small arteries was successfully achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein localization in living cells and tissues using FRET and FLIM.

Interacting proteins assemble into molecular machines that control cellular homeostasis in living cells. While the in vitro screening methods have the advantage of providing direct access to the genetic information encoding unknown protein partners, they do not allow direct access to interactions of these protein partners in their natural environment inside the living cell. Using wide-field, co...

متن کامل

Noninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI

Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...

متن کامل

Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells

Förster resonance energy transfer (FRET) describes excitation energy exchange between two adjacent molecules typically in distances ranging from 2 to 10 nm. The process depends on dipole-dipole coupling of the molecules and its probability of occurrence cannot be proven directly. Mostly, fluorescence is employed for quantification as it represents a concurring process of relaxation of the excit...

متن کامل

Redox control of exofacial protein thiols/disulfides by protein disulfide isomerase.

Protein disulfide isomerase (PDI) facilitates proper folding and disulfide bonding of nascent proteins in the endoplasmic reticulum and is secreted by cells and associates with the cell surface. We examined the consequence of over- or underexpression of PDI in HT1080 fibrosarcoma cells for the redox state of cell-surface protein thiols/disulfides. Overexpression of PDI resulted in 3.6-4. 2-fold...

متن کامل

FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells.

The lateral organization of a prototypical G protein-coupled receptor, the neurokinin-1 receptor (NK1R), was investigated in living cells by fluorescence resonance energy transfer (FRET) microscopy, taking advantage of the recently developed acyl carrier protein (ACP) labeling technique. The NK1R was expressed as fusion protein with ACP to which small fluorophores were then covalently bound. Ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013